

DRC DigitalReserve V1.0

Smart Contract Security Assessment

Date: Feb. 10, 2021

Dedaub
Security Technology for Smart Contracts

Abstract
Dedaub was commissioned to perform a security audit on DRC’s digital reserve smart contracts.
The digital reserve is a vehicle for investing DRC’s token (not included in this audit, but is fairly
straightforward). The digital reserve is in turn backed by several other tokens traded using the
UniswapV2 protocol. The underlying currencies of the digital reserve and proportions thereof are
expected to be set and maintained by a trusted entity (e.g., a fund manager) working in the interest

of the DRC token holders. The digital reserve itself is a fungible ERC-20 token (DR-POD).

Four auditors worked on the task over the course of three working days. We reviewed the code in
significant depth, assessed the economics of the protocol and processed it through automated

tools. We also decompiled the code and analyzed it, using our static analysis (incl. symbolic
execution) tools, to detect possible issues.

Setting and Caveats
The code base is relatively small in size, however the economic mechanisms behind the digital
reserve are complicated. Although most smart contract auditors do not account for protocol
composability issues and the economic risks these bring, we do in this audit.

The audit focused on security, establishing the overall security model and its robustness and also
crypto-economic issues. Functional correctness (e.g., that the calculations are correct) was a
secondary priority. Functional correctness for this project can be assessed through more thorough

testing.

Trust Model/Centralization Elements

[This section is included for context, although its contents should already be known to the commissioner
of an audit.]
The contract cannot directly acquire the user’s funds. The funds remain with the caller until
explicitly converted. However, the owner of the Digital Reserve contract can change the allocation
strategy at any point, including to otherwise value-less tokens. In this sense, the contract’s users

are fully trusting the contract owner to promote the best interests of the pooled funds.

2

Full list of other audit findings can be found below.

Critical Severity

3

Description Status

The digital reserve is susceptible to flash loan attacks. Hackers can potentially
“leech” all the underlying tokens invested in the reserve. Obviously, such a flash loan
attack would require certain conditions to be met (e.g., favorable sizes of liquidity
pools) and a skilled hacker to pull off but it can be done.

We will consider much simplified numbers in order to demonstrate the attack and
the weak points of the economic model.

Imagine that we start from the following state in the Vault and UniswapV2 pools
respectively:

At this point the real exchange rate is 1 DRC ↔ 1 WBTC ↔ 20 WETH . That’s the
actual fair value. But we’ll manipulate the Uniswap pool during the transaction, so

this will change. Updates to the balance of WBTC ↔ WETH in the pool will be
shown in bold and highlighted. [Attacker is a “he” in the explanation below, for
directness.]

Resolved

Vault (DigitalReserve) Pool (UniswapV2 WETH ↔ WBTC
pool)

5 DRC deposited, the strategy is very
simple: all invested in a single strategy
token (WBTC), assume 5 WBTC in total

1 POD minted (not realistic, just for
illustration, one could use any number
and all the other POD numbers would
scale accordingly)

10 WBTC ↔ 200 WETH

4

Step 1. The attacker dumps 10 WBTC, to lower the Uniswap WBTC price. Get back

100 ETH, based on Uniswap’s constant-product algorithm. Pool is now 20 WBTC ↔
100 WETH.

At this point the attacker has lost money in order to distort the value of the

Uniswap pool. Whoever next trades WETH for WBTC will be making back the
money. (It will be the attacker himself, but he will do it through the vault, and this
will give him double benefit.)

Step 2. The attacker deposits to the vault (DigitalReserve) 5 DRC. Its fair market
value is 100 ETH. The Uniswap pool DRC ↔ WETH is not manipulated, so we don’t

show it: it will remain fairly priced at 100 ETH.

The vault has 5 DRC from past deposits, stored as 5 WBTC. So when Uniswap is

asked (currentPodUnitPrice in depositDrc () indirectly calls Uniswap’s

getAmountsOut) it says that the vault (which is 1 POD) is worth just 20 ETH. (It’s
really worth 100 ETH.)

[The Uniswap getAmountsOut computes based on the formula amountOut =
amountIn * reserveOut / (reserveIn + amountIn) . It also adds 0.3% fees,
which we ignore for simplicity. In this case we are asking how much we’d get out if we were
to trade amountIn =5 WBTC, with the reserves being 20 WBTC ↔ 100 WETH.]

The attacker’s 100 ETH (from the 5 DRC deposited) is exchanged into 10 WBTC.

The pool now is 10 WBTC ↔ 200 WETH. The pool is back to “fair”. The attacker
made back his losses, but also: this is money traded through the vault. So the vault
now has 5+10 = 15 WBTC. The deposit function calls again the Uniswap

getAmountsOut , which tells it that the Vault’s current ETH value is 120 ETH. (This
is what we would be getting if we were trading the entire vault in the Uniswap pool.)

[15 * 200 / (15 + 10) = 120]

The computation in the smart contract is next determining how much the attacker’s
deposit added to the value of the vault. That’s 120 ETH / 20 ETH (previously

computed price of a POD) = 6 POD. So, the attacker’s deposit increased the vault’s
assets from 1 POD to 6. The code mints the attacker 5 POD.

High Severity

[No high severity issues]

Medium Severity

[No medium severity issues]

Low Severity

Lowest/Style/Info/Suggestions

5

To recap, the attacker spent 10 WBTC + 5 DRC (fair value = 300 ETH) but ended up
with 350 ETH: 100 ETH from the swap of Step 1 and 250 ETH from 5 POD (out of a
total of 6 POD, which all together map to 15 WBTC, or 300 ETH).

The attacker made money because when he deposited 5 DRC to get POD, the vault
bought for him WBTC, making back slippage losses from the first step. But at the
same time, the vault valued its current assets by considering a swap from WBTC to
WETH. But WBTC was way undervalued at the time. When the attacker gained

back the slippage and the vault tried to estimate how much value the attacker
added to it, this was fixed. Therefore, while making back his slippage losses from
step 1, the attacker also cheats the vault to give him a higher percentage of the total
POD than it should have given.

Description Status

If the number of strategy tokens increases to more than 255 a number of
variables and also loop induction variables will overflow.

Resolved

Description Status

Some fields could have stricter modifiers: Resolved

6

● router could become immutable
● uniswapRouter could become immutable
● _pricerDecimals can become constant

There are some redundant fields:
● router and uniswapRouter point to the same contract.
● _stategyTokenCount is functionally dependent on

_stategyTokens.length

It is suggested that only one field per pair is maintained.

Resolved

It is possible that _stategyTokens and _tokenPercentage be merged into a
storage array of type:
 struct StategyToken {
 address tokenAddress;
 uint8 tokenPercentage;
 }

Since these storage structures are accessed in tandem (usually
_tokenPercentage[_strategyTokens[i]]), this change should lead to significant gas
savings as the two fields would be stored in a single storage word.

Resolved

_convertEthToStrategyTokens() has a return value that is never used at its
call sites.

Resolved

Strictly speaking, the fees are 1/99, i.e., 1.01%, not 1%. Mentioning for
information purposes, as it may be understood already.

Resolved

changeStrategy() performs token-to-ETH and ETH-to-token swaps even when
these are unnecessary. This is probably fine, but it does have an impact on

Uniswap fees. A future version can lower the fees, if this becomes an issue.

However, since rebalance() already performs such calculations, it is not clear

why changeStrategy() and rebalance() cannot be unified into a single
generalized-rebalance routine.

Open

Some variables are not explicitly initialized:
● proofOfDepositPrice in getProofOfDepositPrice()
● totalWorthInEth in rebalance()
● amountOut in _getEthAmountByStrategyTokensAmount()

Resolved

Disclaimer
The audited contracts have been analyzed using automated techniques and extensive human
inspection in accordance with state-of-the-art practices as of the date of this report. The audit
makes no statements or warranties on the security of the code. On its own, it cannot be

considered a sufficient assessment of the correctness status of the contract. While we have
conducted an analysis to the best of our ability, it is our recommendation for high-value contracts
to commission several independent audits, as well as a public bug bounty program.

7

● ethConverted in _convertStrategyTokensToEth()

Use of a floating pragma: The floating pragma pragma solidity ̂0.6.6;
is used allowing the contracts to be compiled with the 0.6.6 - 0.6.12 versions
of the Solidity compiler. Although there differences between these versions are
small, floating pragmas should be avoided and the pragma should be fixed to the
version that will be used for the contracts’ deployment.

Resolved

The contracts were compiled with the Solidity compiler v0.6.12 which has some
known minor issues (but relatively few, compared to earlier versions). We have
reviewed the issues and do not believe them to affect the contract. More
specifically, at the time of writing, there are 2 known compiler bugs associated

with the Solidity compiler v0.6.12:

● Copying an empty bytes or string array from memory to storage can
cause data corruption. (We couldn’t find bytes arrays in storage.)

● Direct assignments of storage arrays with an element size <= 16 bytes
(more than one values fit in one 32 byte word) are not correctly cleared if
the length of the newly assigned value is smaller than the length of the
previous one. (No such array is ever stored.)

Closed

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

About Dedaub
Dedaub offers technology and auditing services for smart contract security. The founders, Neville
Grech and Yannis Smaragdakis, are top researchers in program analysis. Dedaub’s smart contract
technology is demonstrated in the contract-library.com service, which decompiles and performs
security analyses on the full Ethereum blockchain.

8

https://contract-library.com/

